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Abstract Rotaxanes are not considered to be topological isomers of their separated fragments. However, due to their
similarity to catenanes, they are often discussed within the realm of topological chemistry. Similarly, "in" fullerene
isomers (endohedral complexes nested ﬁﬂlerenes, and the isomers of hydrogenated ﬁxllerenes) have not, until recently,
been treated as topological isomers of the corresponding "out” isomers. In this paper the probiem of topological
isomerism is analysed departing from the standard topological notions of arbitrary continuous deformations imposed on
the system under investigation as a sufficient condition for topological isomerism. Similarly to the isomer classification
into conformational and conﬁgurational isomers, the energy barrier between the trivial (e. g., separated rings) and

al iras shanld ha inusal-ad ah Alnceifia Benit allasad
uuu-ulvu:u \c 5 N \.al.cu.atcu; LUPU].UEIWI structures shouiG oe Invoxea uuu suci uxaabxuuauuua {0 u.uul alowcla

deformations of the systems under investigation, A precise mathematical model of the classification, based on topological
invariants, is presented in an Appendix. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

For more than 100 years Mabius strips, links modelling catenanes, knots (Fig. 1), and other topological
objects had been considered mathematicians' toys by chemists and the first paper discussing the possibility of
syntheses of this kind of objects was not accepted for publishing in 1960. It circulated, was widely cited as
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[2], M&bius strip 2a, b [3], and trefoil knot 3a, b [4]. At first catenanes have been obtained by means of the
statistical approach. However, obtaining more complicated higher catenanes (such as doubly intertwined catenane
4, [5] olympiadane 5 [6], and multicatenane 6 with bicyclic core [7]) as well as trefoil knot 3 [4] was made
possible only by directed syntheses taking advantage of preorganization phenomenon. On the other hand,
catenated and knotted structures were found to be common in circular DNA 7 [8a] that, even in its simplest form
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Fig. 1. Models of some non-trivial topological molecules.

0040-4020/98/$19.00 © 1998 Elsevier Science Ltd. All rights reserved.
PII: S0040-4020(98)00044-1



S
W
o

VAR
~/
>
N\
//\
N
-~/
).
¥
0
POy
y <W>

of the cycle, models a non-trivial topological object. Moreover [8b], specific enzymes, topoisomerases, executing
interconversions between circular and knotted (or catenated) DNAs have been identified.

The topological isomers can be represented by simple models to which precise topological definitions
involving unusual deformations can be applied [9]. This is not the case for rotaxanes 8 [1c]. They represent the
dumbbell systems consisting of a linear chain, threaded through a ring, with voluminous substituents at its ends
preventing slitming out of the ring. Theoretically, bv applying a nonphysical stretchine to the ring, one could

topological molecules [1d - 1h]. However, in view of their similarity to catenanes, they are often discussed
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Fig. 2. The equilibrium between a rotaxane and its separated fragments.

As will be discussed below, we believe that rotaxanes can be included into this group if only physically
admissible deformations are taken into account. Similarly, endo- [11] and exohedral fullerene complexes, nested
fullerenes [12] as opposed to separated ones, and "in" and "out" isomers of hydrogenated fullerenes with CH
bonds pointing inside the Cg cage [13] have not, until recently [14], been considered as topological isomers
since they interconvert upon application of nonphysical deformations.

.
In continnation of our work on classification
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contin of our work on classification of organic molecules [15] and that on "in-out" isomerism
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in perhydrogenated fullerenes [14], in this report we would like to analyse the problem of topological isomerism
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under investigation as a sufficient condition for topological isomerism. We believe that similariy to the isomer
classification into conformational and configurational isomers [16], the energy barrier between the trivial (e. g.,
separated rings) and non-trivial (e. g., catenated) topological structures should be invoked into such classification.

Keeping in mind the difference between a real molecule and its mathematical model discussed by Mislow
and Bickart [17], we believe that by analysing whether molecules are topological isomers the energy barrier for
interconversion between the isomers should be taken into account. Let us consider an internal rotation around
a CC bond. Depending on the barrier to this rotation, in this case there is a practically continuous change from
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a well-defined rotaxane structure through a dynamic equilibrium depicted in Fig. 2 to two separate fragments.



As discussed below, the situation with endohedral fullerene compiexes, nested fullerenes, and “in" isomers of
hydrogenated fullerenes is similar and their topology should be discussed taking into account the corresponding
barriers. Then, as shown in Appendix, their topological classification can be discussed in terms of
well-established theory of topological invariants [9].
The Definitions and Their Implications

Topology is a branch of mathematics investigating relations among objects and object properties pertinent
to continuous transformations of one object into another [9] like the one shown in Fig. 3. These transformations

of them or ghiin

equivalent while a circle and a line interval are distinct (Fig. 4). Similarly, two circles of different size are also
topologicalily equivalent. Topological singularity of such molecules as those modeiling links (catenanes) ia [ia -
1c], Mé&bius strip 2a, b [1e], and knots 3a, b [1f] was defined applying precise topological definitions allowing
for considerable (sometimes unrealistic in terms of molecular stability) deformations applied to a standard
molecular model. To include rotaxanes 8 and "in" isomers of hydrogenated fullerenes such as 9 into the realm
of topologically distinguishable molecules, we have to put some semiquantitative physical restrictions on the
allowed deformations. Fortunately, it is possible to incorporate these physical restrictions into the language of
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Fig. 3. An example of a continuous deformation of a circle into a square.
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bonds of definite length that can be represented by a molecular graph. The problem whether between the atoms
in question there is a bond or not is gaining significance in view of (i) the rapid development of supramolecular

chemistry involving noncovalent bonds [1i] and (ii) the anomalous bond order in [1.1.1]propellane 10. Mislow

<

[17b] proposed weighing graph wedges to describe such
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bonds. This idea lies beyond our discussion of molecular topology. For the obvious reason we will consider all
objects in three-dimensional (3-D) Euclidean space and we admit only transformations of these objects coming

from continuous transformations of 3D space.

In his fundamental article on molecular topology [le], Walba claims that he is analysing molecular
properties in terms of low-dimensional molecular topology. va-. er, as a matter of fact his discussion is limited
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to one-dimensional graphs, i. e. he deals only with one-
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beyond this limitation and consider some objects that can be better described including also two-dimensional
surfaces. Similarly to Walba's approach, we focus our attention on qualitative rather than quantitative presentation
with a clear description of the process of extraction of qualitative differences from quantitative ones. By the latter
we understand geometrical and energy parameters of the system under discussion. To analyse the specificity of
topological isomers, let us start from the definition of stereoisomers to show the differences between these two
classes of isomerism. Two molecules are called stereoismers if they have identical connectivity schemes but

differ in the space arrangement of their constituent atoms. As commonly accepted in organic stereochemistry,

a molecule can assume onlv a finite number of such spatial arraneements. If one considers geometrical,
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2. The height of the barrier to these processes defines the type of isomerism we deal with. However, the barriers
change continuously and there are no strict quantitative limits defining conformational or configurational isomers
and the ill-defined region between them is occupied by atropisomers.
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Fig. 5. Examples of geometrical (left), conformational (middle) and configurational (right) isomers.
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isomers.

Concerning the barrier heights, in our approach, the situation with topological isomers is similar to that
with stereoisomers, for which the barrier height defines the type of isomerism (geometrical, conformational, etc.).
In the Walba presentation, the barriers involving interconversions between the topological isomers are infinite
since there is no restriction to admissible deformations of the molecules under discussion whereas, in agreement
with physical notions, we impose limitations on these barriers.

Let us note that the interconversions between such stereoisomers as geometrical, conformational or
configurational ones implicate radical geometrical changes within well-defined small regions involving one or
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Interconversions may invoive only smalil local geometry changes spread over large regions. Such a situation is
typical of [2]catenane in which, after breaking of any bond and dethreading, this bond is restored with its original
geometry. Also in case of a (sufficiently large) knot and rotaxane the local geometry of their topological isomers
is very close.

From the energy point of view, to execute the separation of two interlocked rings forming [2]catenane
either one of its rings has to be cut or (equivalent to the cutting) at a certain moment they must intersect in a
point. Thus, a stretching of at least one bond to such an extent that it breaks is a condition of the separation.
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poinis of the system. Therefore, due to this high energy barrier, there is a clear-cut difference between
topologically distinct objects (like knots or Mobius strips) and their corresponding counterparts (i.e. a ring)
validating a classical linear model as a basis for topological analysis.

From a topological point of view Mbius-type molecules are very specific since they fall into two distinct
categories depending on the parity of their winding number. Namely, those of one, 3, 5, efc. twists are
constitutional isomers of the ones with an even number of twists. For instance, the isomer with one twist 2a and

the one with no twist, e. i. a simple ring, are constitutional isomers whereas those with left and right twists like
2a and 2b as well as those with the same parity of the winding number are topological isomers.
For rotaxanes 8, endohedral fullerene complexes, nested fullerenes (as opposed to their separated

fragments) and "in" isomers of hydrogenated fullerenes, the situation is much more complicated. If a continuous
stretching is applied to a mathematical model representing the rotaxane structure, then there is a possibiiity of
the disintegration of the system. However, if we pass from an ideal model to real molecules then for 8 with small
central ring and bulky terminal groups there is no possibility for the separation of the systems into their
constituent parts without at least one bond breaking. Therefore, in the real world there are three possibilities :
a. If the relative size of the ring as compared to the size of the voluminous substituents is small, then the rotaxane
8, once formed, is stable since there is a high barrier for its decomposition.

h. If on the other hand the rel

n the rotaxane structure is unstable. Even if it i
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It should be stressed that similarly to conformational and configurational isomers, there is no clear-cut
quantitative distinction between the above categories. Indeed, by varying the ring size, one can span all three
situations. Moreover, due to so-called "residual isomerism" [18], in some cases one can pass from one of the
above categories to another by, for instance, changing the temperature. As a matter of fact, a few rotaxanes have
been obtained by "slippage" of a ring through a substituent of intermediate volume at elevated temperatures. The
rotaxanes synthesized in this way are stable at lower temperatures [19].

To conclude, the barrier to the decomposition process is an important factor determining the possibility
of existence of a partlcular rotaxane structure in given conditions. Therefore, we believe that for large barriers
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Exactly the same reasoning can be applied to endohedrai fullerene compiexes [11], nested fulierenes {12],
and "in" isomers of hydrogenated fullerenes [13, 14, 20]. They can all be called "in" fullerene isomers as opposed
to the corresponding "out" isomers. In an ideal model situation of the endohedral fullerene complex one can
enlarge a ring to allow the ion out of the cage. However, this would be a physically inadmissible deformation.
In reality one has to break some bonds in the fullerene cage (leading to wider openings in the cage "surface") to
allow for the complex decomposition. Also in this case the process involves a high energy barrier and endohedral
fullerene complexes are topological isomers as well. Even larger "openings” are necessary in case of nested

fullerenes to let a smaller inner fullerene out from the outer cage.

The hypothetical fully hydrogenated fullerene CqHy, (and some of its simple alky! derivatives) has been
JR, T o PG T TR, G DRI YY, NP MRS NI PN SRRy NUNS, [V WP SN 5. JURPN. P pr. DI I, Sus
shown to be considerably more stable with ten hydrogen atoms (or a methyl group) pointing inside the cavity than

the all-out analogues [13, 14]. Also in this case the interconversion is impossibie without bond breaking if only
physically admissible deformations are taken into account. Thus, in-out isomerism in fulleranes also belongs to

wiriski / Tetrahedron 54 (1998) 2917-2930 2921
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the class of topological isomerisms.

To be able to define precisely topological invariance allowing us to distinguish rotaxanes 8 from their
separated fragments (and "in" and "out" fullerene isomers), we have to extend our simplified molecular model
by adding surface membranes spanned on ring structures. In this model, fullerene cage can be represented by a
polyhedral surface (mimicking a soccer ball) consisting of penta- and hexagons spanned over the five- and
six-membered rings. Physically, each such penta- or hexagonal membrane stands here for a barrier impenetrable
for ions, atoms or molecules (as is the case in nested fullerenes). This surface allows for the differentiation
between the inner and outer space fragments and, consequently, between the “in” and “out”
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movement along the chain until the terminal groups are involved) on the central ring. By such
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invariants that wm allow us to mclude rotaxangs 8 and ”i_n" and A”out” ‘fuIIAerené ?Sf)mers into FiTe h(O»I
realm of topologically distinguishable molecules. A precise mathematical model is presented in
Appendix.

Liang and Mislow [1h] discussed classification of topologically chiral molecules, that is
of molecules that have topologically chiral graphs. They speak of geometrical and topological
chirality. The former one is the usual chirality of molecules that cannot be superimposed on their

mirror images. The latter refers to the chirality of the molecular graph. It should be st d that 11
a chiral molecule can be tepclegicall" achiral [6]. Chochin 11 [21] represents such an example

Topological non-trivialities in molecular world

Topological chemistry or some its aspects have been reviewed often [1]. The most comprehensive is the
article on interlocked and intertwined structures and superstructures published by Amabilino and Stoddart [1i].
This review to a great extent covers the domain of topological chemistry. However, this area is rapidly
developing. Therefore, a brief survey of novel topologically nontrivial molecules or the ones not included in the
review will be given in the following in an attempt to put them into a framework of geometric topology outlined
in the Appendix. Following the Amabilino and Stoddart example, in addition to known structures several

hypothetical ones will be briefly discussed, too.

" n
Syntheses of a "pretzel" molecule, /. e. linked catenane, 12 [22] and coupled [2]rotaxane 13 [23] have
Lo —nnmentler mnsamatnd Laee V2 ndln?dy neneie sxrhila 4lan £ 1a annea wtrno anlias
been recently reported by Vogtle’s group while that of branched [7]catenane 14 was achieved by Stoddart et al.

- - 4 4 4 2
14 19 1 4 io
[24]. The resolution of a knot into enantiomers [25] and the synthesis of a composite knot 15 was published
. by the Dietrich-Buchecker and Sauvage group {26}.
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structures [27] and a network of catenated DNAs (Fig. 6) have been obtained [28]. Borromean rings like 16 have
been presented as exciting synthetic targets in Ref. 1i. The synthesis of DNA structures of this type followed [29].
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Fig. 6. A network of catenated DNA structures.

Interesting hypothetical cycloacenes 17, related cycloacenes having Mébius strip-type structure with two
twists and hypothetical knots with dualist graphs 18 - 20 composed of the appropriately linked aromatic rings
have been proposed by Balaban [30]. These molecules seem too strained to be stable. However, larger systems

of this tvne could be nrnqnechve t:vnfhet_ targets.
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A detailed study of in-out isomerism in hypothetical fulieranes CoHy,R\R, (R, R,
all constitutional and configurational isomers was recently carried out [20].
Other hypothetical structures of more complicated closed surfaces that can be mimicked by organic

molecules are torii [31] or surfaces of higher genus (see Appendix). Torus-type molecules formed as closed
nanotubes have been recently observed [32]. More complicated topological structures could be obtained by

= H, Me) exploring

inserting an atom, an ion, or a ring into the tire-like torus.

Fig. 7. A torus and its two “in” isomers with inserted ring.



knowledge only few molecules of this kind have been synthes1zed Centrally annelated heterocyclic polyquinane
21 [33] and centrohexaindane 22 [34], [6]cochin 11 [21] (and its lower analogues as well as its analogues
involving naphthalene units), "Kuratowski cyclophane" 23 [35] are the first examples of this type paving the
avenues to new exciting chemistry. These molecules could be also interesting for prospective applications since
they should exhibit unusual electric and magnetic properties.
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between isomers in full analogy with the differentiation between conformational and configurational isomers
in classical organic chemistry. The resulting topological classification of molecules can then be based on the
well-established theory of topological invariants. According to this classification, rotaxanes and in-out fullerene
isomers do belong to the realm of organic molecules with unusual topological structure. On the other hand, DNA
helices, helicates and pseudorotaxanes also discussed by Amabilino and Stoddart [1i] should not be included into

this group.

ppendix: Topology
olyhedral compiexes and polyhedra
A simplex in the three-dimensional Euclidean space is a point (0-simplex), a line interval (1-simplex),

a triangle (2-simplex) or a tetrahedron (3-simplex). Each simplex is composed from its interior and its faces: in

u-n

Po

the case of a 0-simplex, the interior is composed from the only point and there are no faces, the faces of a
1-simplex are its endpoints, the faces of a 2-simplex are its edges and the faces of a 3-simplex are its triangular
faces. For a given simplex, its subsimplices are faces, faces of its faces etc. down to the vertex level.

A collection C of snn__pl s a complex if and only if:
(1) if a cimnlavy halanoc ta O then all ite facec halano ta C-
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(2) the interiors of distinct simplices do not intersect;

(3) The intersections of simplices are sums of common subsimplices.
The maximum dimension of all simplices in C is called the dimension of C.
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Bad triangie intersection

Fig. 8. Examples of a triangulation (left) and simplices not forming a triangulation (right).

A subset P of the Euclidean space is called a polyhedron if there exists a polyhedral complex C such that
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have different triangulations - for exampie any subdivision of an interval by a series of points gives a
triangulation of this interval. The standard model of a chemical molecule consisting of atoms as points in the
Euclidean space and bonds symbolized by the edges joining the atoms is clearly an example of a one-dimensional
polyhedral complex. It should be emphasized that we do not analyse precisely the identities of points and edges
of our complex - we are interested only in an overall shape of the resulting polyhedron. We will call two
polyhedra P and Q in the Euclidean space topologically equivalent if there exists a continuous deformation of
the space starting from the identity and ending with a mapping that carries P over Q.

A continuous deformation (like the one schematically shown in Fig. 3) is a family of homeomorphisms,
that is of mappings that neither break apart nor glue the points in the space, indexed by a time-like parameter t

and such that there are no sudden jumps as t changes from 0 to 1. For example, if P and Q differ only by a
translation by a vector v then the family of translations by t*v is the required deformation. In general, it is hard
to determine whether two polyhedra are, or are not, topologically equivalent. There exists a variety of so-called
topological invariants, that is, simple (or less simple) algebraic objects such as integer numbers, polynomials or
groups that can be used for distinguishing topological objects. For example, the number of connected components
(that is, parts of a polyhedron that cannot be joined by paths lying entirely in the polyhedron) is such an invariant.
A single interval cannot be deformed into a sum of more than one disjoint intervals. With the apparatus of the
topological invariants one can in many cases prove that two given polyhedra are not topologically equivalent in

the Euclidean space. For a general reference to the tonology of nnlvhpdra and simplicial r'nmnhvpe see Ref. 9.

the Euclidean s pace. For a general reference to the topology of polyhedra and simp co ces see Ref
We will now outline one example of such an invariant for a polyhedron consisting of two components
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A and B, each equivalent to a closed curve. Suppose we have fixed the orientation (a "direction") of each of these

curves and let us regard a vertex v of one curve and a vertex w of the other, since the orientations of both curves
are fixed, there are vertices v' and w' next to v and w with respect to this orientation. We will now call the pair
(v,w) positive if the three vectors [v,w], [v,v'] and [w,w'] form a positively oriented basis and negative if this
vector triple is negatively oriented.

Let us fix now a vector u in the space and let us count all the pairs (v,w) with the vertex v belonging to
the first curve, w belonging to the second one and such that there are points p and q in the intervals vv' and ww'
with the vector [p, q] parallel to x and with the same orientation. If we subtract the number of negative pairs (v,

w) from that of the positive ones, then the resultmg number does not depend on the choxce of u, but only on the

urves form
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Fig. 9. A scheme of a summand in the linking index formula.

should be stressed that it can be interpreted in terms of electromagnetic induction in a wire B around the magnetic
kernel A. It can be verified that if A and B can be separated by a deformation of the polyhedron then the linking
number is 0 and that for the two simpie pianar polyhedrai curves iinked as the ordinary chain iinks the linking
number is 1 or -1, depending on the orientation of both curves.

A very productive method of introduction of topological invariants for knots and links (that is, polyhedra
equivalent to closed simple curves or disjoint sums of such curves in the space) is a careful analysis of the so-
called diagrams, that is, plane images (projections) of the polyhedra with some indication which branch of the
curve passes above the other branch at a crossing.

One can easily prove that for any given polyhedral link there exist regular projections, that is such
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(2) no triple crossing occurs and there are only finitely many crossings;
(3) there are no crossings involving the vertices of the polyhedron.

For each non-trivial diagram D = D, one can find a crossing in D such that two diagrams D_ and D,
formed from D by the modifications shown in Fig. 10 can be simplified to the diagrams with less crossings than
the original one. Therefore, it makes sense to use formulae relating invariants of D,, D_ and D, to compute
recursively these invariants for arbitrary diagrams.

f a diagram crossing. The shaded areas symbolize identical parts of the diagrams.

An important easily computable invariant enabling us to distinguish many non-equivalent links with great
precision known as the Jones polynomial VD is defined for a diagram D by the following conditions :
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(0) VD is a Laurent polynomial in Vi that is a finite sum of positive and negative powers of Nt with ¢

A% ¥ g 11U41 1 1819 3

(2) recursion formula

fr\ /\/4 VN (+\ L+ — {4
VLDpt)jt— vVv/_t) =t —=\V

A non-trivial theorem states that for any two diagrams representing a link L the resulting Jones
polynomials will be the same. Therefore it makes sense to call V a link invariant. This invariant, together with

some generalizations assisted a rapid development of the knot theory in the last years. For a general reference

lished as a model of a molecule. From the tupuxugn.al puuu. of view
a graph is a one-dimensional polyhedron. For the reason of broadening the scope of topological framework to
include more complicated examples of isomerism we have to make our modelling machinery a little more
precise.

As the topological notions are of more quantitative nature than the geometric or physical ones (defined
in the terms of energy and other physical variables), the topological modelling involves some quantization
procedures. A simple example of such a procedure is the introduction of a bond joining two atoms as an edge.
For our purpose, this is only a symbol that the two atoms linked cannot be separated to a great distance without
application of a relatively large energy that will change fundamentally the nature of the molecule in question

Moreover, one can easily estimate that each transformation of the molecular system thai would involve
a crossing of two such bonds should also involve very high energetic barrier equivalent to the breaking of at least
one of these bonds. These two facts allow us to state that all physically viable geometric transformations of
molecules are topological equivalencies in the Euclidean 3-space and therefore the invariants outlined above can
be used to distinguish topological isomers of a molecule under investigation.

We are now going a step further. Let us regard a simple example of an aromatic ring and any atom or ion
outside of this ring. It can be easily observed that pushing this atom/ion through the ring should require again an

amount of enerov sufficient to break at least one bond. Therefore we can again state that from the " point of view"

amount of energy sufficient to break e herefore v 1 again that from the t of
of this atom the ring can be regarded as a piece of surface and not only as a closed hexagonal curve. This in turn
means that from that we can legitimately represent a fullerene molecule as a polyhedral surface topologically
equivalent to the sphere and distinguish regions "inside" and "outside" of this sphere. This has actually been
indirectly assumed in studies of endohedral fullerene complexes and in our works on "in-out" isomerism in
perhydrogenated fullerenes [14, 20].

The construction of the linking index outlined above can be generalized to include such notions as the
distinction between points "inside" and "outside" of a closed curve in the plane or points "inside" or "outside"
a closed, two-sided surface. In the last case, one defines the orientation of a polyhedral triangulated surface as

ardly normal” vectors over the surface, that is unit vectors orthogonal to the triangular
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Fig. 11. Compatible orientations of two neighbouring triangles of a surface.

The index of a point p with respect to such an oriented surface can be now defined by selection of a vector
v and count of intersections of the half-line starting from p in the direction of v. Again, an intersection is counted
as positive if the vector normal to the intersected triangle forms an acute angle with the direction v.

The last type of topological isomers discussed in this paper, that of rotaxanes and their separated
fragments, involves a similar reasoning. One can estimate the minimum diameter of the bulky groups of these
molecules from the values of bond lengths and van der Waals radii. One can also estimate the maximum diameter

of the empty space within the ring in t..h_e similar way. Again, if the bulky substituents are large enough, it is
nhucirally imnnceihla tn avtand tha rina ena that the cithetitnente wanld mace theranah ite anenina Thue in a
yll] DA NIJAV AW W/ ‘Jl\b\-/l.lu AL 15 DWW HAGL LAV DU UJLILWWIALT YV U LA PQBD uuuuslx ALO VU \al.uls. A REUAD AdlL Q

somehow dual manner, the bulky groups can be regarded as infinitely large and our topological model of the
rotaxane can be simplified to a curve (the backbone) linking two infinite planes (the bulky substituents) with the
ring structure wrapped around the backbone in contrast to the ring separated from the backbone in the case of

separable topological isomer.
The linking index defined above can be generalized to describe topological isomerism of rotaxanes and

their separated fragments.

Fig. 12. An abstract topological model of a rotaxane 8 and its separated fragments.
For an example of a more mathematical treatment of the topological properties of DNA molecules, see
Ref. 37.
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